M1.(a) $\quad \mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$
Accept multiples.
Ignore state symbols, even if incorrect.
(b) Hazard acid corrosive or
hydrogen flammable / explosive
Accept 'iron(II) sulfate / sulfuric acid an irritant'.
$0.741 / 40.3=0.0184$
0.018 with no M_{r} shown $=0$

Penalise if not 3 sig figs in this clip only
(ii) $0.0184 \times \underline{5 / 2}=0.0460$

Allow 0.0459 to 0.0463
Allow their (a)(i) $\times 5 / 2$ ie allow process mark of $\times 5 / 2$ but insist on a correct answer being written down Ignore sig figs
(b) $\mathrm{pV}=\mathrm{nRT}$

Ignore units
11.1 (dm ${ }^{3}$)

3 marks for 11.1 (dm $\left.{ }^{3}\right)$
However if $11.1 \mathrm{~m}^{3}$ or cm^{3} allow 2 (ie penalise wrong units in final answer)
Ignore sig figs- but must be 2 sig figs or greater
(c) (i) $0.0152 \times 2=0.0304$

Allow 0.03
(ii) $0.938 \mathrm{~mol} \mathrm{dm}^{-3}$

Allow range $0.92-0.94$
Minimum 2 sig figs
Allow consequential marking from (c)(i) Ignore units even if wrong

M3.(a) Any two from:
Weigh by difference or rinse weighing bottle and add to beaker
Rinse beaker and add washings to graduated flask
Invert flask several times to ensure uniform solution
Use a funnel to transfer to the flask and rinse the funnel

Use a stirrer to prepare the solution and rinse the stirrer If more than two answers apply the list rule.
(b) $K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]$

Allow any correct expression relating $K_{a},\left[H^{+}\right]$and [HA]

$$
[\mathrm{HA}]=\left(10^{-2.50}\right)^{2} / 1.07 \times 10^{-3}
$$

M2 also scores M1
$=9.35 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
Do not allow 9.4 (answer is 9.346).
Correct answer only scores 1 mark.
Do not penalise precision but must be to at least two significant figures.
(c) $\quad(b) \times 138.0 / 4$
$=0.322$
Using 8.50×10^{-3} gives 0.293
Correct answer scores M1 and M2.
Do not penalise precision but must be to at least two significant figures.
(d) $\quad(\mathrm{c}) \times 100 / 0.500=64.5 \%$

Using 0.293 from (c) gives 58.7%
Using 0.347 gives 69.4\%
Do not penalise precision.
(ii) $\quad($ Mol EDTA $=(6.45 / 1000) \times 0.015=) 9.68 \times 10^{-5} \mathrm{~mol} \mathrm{Cu}(I I)$

Conc. $\mathrm{Cu}(\mathrm{II})=\left(\left(9.68 \times 10^{-5}\right) / 0.025=\right) 0.00387 \mathrm{~mol} \mathrm{dm}^{-3}$
Correct answer without working gains M2 only.
(b) Samples may not be consistent throughout the river OR
Concentration may vary over time
Ignore comments on technique.
(c) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

Accept name eg diamminesilver(I) ion.
aldehyde
Allow CHO.

M5.(a) Theoretical mass produced $=180 \times 2 / 138=2.61 \mathrm{~g}$
Using $1.76 \times 100 / 2$ is a chemical error (CE), scores $0 / 2$

Percentage yield $=1.76 \times 100 / 2.61=67.5 \%$
Correct answer scores M1 and M2.
Accept 67.4\%
Do not penalise precision but answers must be to at least two significant figures.
(b) Crystals lost when filtering or washing / some aspirin stays in solution / other reactions occurring Ignore references to impurities.

M6. (a) (i) $\underline{0.0212}$
Need 3 sig figs
Allow correct answer to 3 sig figs eg 2.12×10^{-2}
(ii) 0.0106

Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs
(iii) $\mathrm{M}_{\mathrm{r}}=\underline{100.1}$
1.06 g

Allow 100.1 as 'string'
Need 3 sig figs or more
Consequential on (a)(ii) x 100(.1)
(iv) Neutralisation or acid / base reaction

Allow acid / alkali reaction
Apply list principle
(b) (i) $\mathrm{T}=304(\mathrm{~K})$ and $\mathrm{P}=100000(\mathrm{~Pa})$

Only T and P correctly converted
$\frac{100000 \times 3.50 \times 10^{-3}}{8.31 \times 304} O R n=\frac{P V}{R T}$
0.139 (mol)

Allow $0.138-0.139$
(ii) $0.0276-0.0278(\mathrm{~mol})$

Allow answer to (b)(i) divided by 5 leading to a correct answer
Allow 0.028
(c) $4.20 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$
$\frac{4.20}{164(.1)} \quad \frac{1.84}{18}$
Mark is for dividing by the correct Mr values
M2 and M3 dependent on correct M1
$0.0256 \quad 0.102$
M2 can be awarded here instead
1 : 3.98
$x=4$
If $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ seen with working then award 3 marks
Credit alternative method which gives $x=4$

M7.(a) $\quad \mathrm{Mol} \mathrm{Pb}=8.14$ / 207(.2) ($=0.0393 \mathrm{~mol})$
M1 and M2 are process marks
$\mathrm{Mol} \mathrm{HNO} 33=0.0393 \times 8 / 3=0.105 \mathrm{~mol}$
Allow mark for M1 $\times 8 / 3$ or M1 $\times 2.67$
1

Vol $\mathrm{HNO}_{3}=0.105 / 2=0.0524\left(\mathrm{dm}^{3}\right)$
Accept range 0.0520 to 0.0530

No consequential marking for M3 Answer to 3 sig figs required
(b) $101000(\mathrm{~Pa})$ and $638 \times 10^{-6}\left(\mathrm{~m}^{3}\right)$

$\underline{0.026(0)(m o l)}$
If answer correct then award 3 marks
Allow answers to 2 sig figs or more
$26.02=1$
If transcription error lose M3 only
(c) (i) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+(1) \mathrm{O}_{2}(\mathrm{~g})$

Allow multiples
Allow fractions
(ii) Decomposition not complete / side reactions / by-products / some $\left(\mathrm{NO}_{2}\right)$ escapes / not all reacts / impure $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Ignore reversible / not heated enough / slow
(iii) Hard to separate O_{2} from NO_{2} / hard to separate the 2 gases

Allow mixture of gases
Not 'all products are gases'

