	(b)	Hazard		acid corrosive or hydrogen flammable / explosive <i>Accept 'iron(II) sulfate / sulfuric acid an irritant'.</i>			
		Prec	caution	gloves or eye protection or avoid naked flames / spark <i>Allow 'if reagent contacts skin wash off immediately' or</i> <i>answers to that effect instead of gloves.</i> <i>Do not allow 'wipe up spillages'.</i> <i>Ignore 'lab coat' or 'use of fume cupboard' or 'do not ingest</i> <i>chemicals'.</i>			
M2.		(a)	(i) 0.74	<i>M</i> _r MgO = 40.3 <i>If used 40 then penalise this mark but allow consequential</i> <i>M2 (0.0185)</i> 1/40.3 = 0.0184 0.018 with no M _r shown = 0 <i>Penalise if not 3 sig figs in this clip only</i>			
		(ii)	0.01	84 × <u>5/2</u> = 0.0460 Allow 0.0459 to 0.0463 Allow their (a)(i) × 5/2 ie allow process mark of × 5/2 but insist on a correct answer being written down Ignore sig figs			
				Page 2			
PhysicsAndMathsTutor.com							

M1.(a) Fe + $H_2SO_4 \rightarrow FeSO_4 + H_2$

Accept multiples.

Ignore state symbols, even if incorrect.

[3]

1

1

1

1

1

1

(b) pV = nRT

(V =
$$\frac{0.402 \times 8.31 \times 333)}{100\ 000}$$
)
If rearranged incorrectly then lose M1
If this expression correct then candidate has scored first
mark
0.0111

Ignore units

11.1 (dm³)

3 marks for 11.1 (dm³) However if 11.1 m³ or cm³ allow 2 (ie penalise wrong units in final answer) Ignore sig figs- but must be 2 sig figs or greater

(c) (i) 0.0152 × 2 = 0.0304 *Allow 0.03*

(ii) 0.938 mol dm⁻³

Allow range 0.92 – 0.94 Minimum 2 sig figs Allow consequential marking from (c)(i) Ignore units even if wrong

M3.(a) Any two from:

Weigh by difference or rinse weighing bottle and add to beaker

Rinse beaker and add washings to graduated flask

Invert flask several times to ensure uniform solution

Use a funnel to transfer to the flask and rinse the funnel

1

1

1

1

[8]

	Use a stirrer to prepare the solution <u>and</u> rinse the stirrer If more than two answers apply the list rule.	Max 2
(b)	K₅ = [H⁺]² / [HA] Allow any correct expression relating K₅, [H⁺] and [HA]	1
	[HA] = (10 ^{-2.50}) ² / 1.07 × 10 ⁻³ M2 also scores M1	1
	= 9.35 × 10 ⁻³ (mol dm ⁻³) Do not allow 9.4 (answer is 9.346). Correct answer only scores 1 mark. Do not penalise precision but must be to at least two significant figures.	1
(c)	(b) × 138.0 / 4	1
	= 0.322 Using 8.50 × 10 ⁻³ gives 0.293 Correct answer scores M1 and M2. Do not penalise precision but must be to at least two significant figures.	1
(d)	(c) × 100 / 0.500 = 64.5% Using 0.293 from (c) gives 58.7% Using 0.347 gives 69.4% Do not penalise precision.	1

[8]

M4. (a)	(i) ED	$TA^{\scriptscriptstyle 4^{\scriptscriptstyle -}} + [Cu(H_2O)_{\scriptscriptstyle 6}]^{\scriptscriptstyle 2^{\scriptscriptstyle +}} \rightarrow [Cu(EDTA)]^{\scriptscriptstyle 2^{\scriptscriptstyle -}} + 6H_2O$	1	
		(ii) (Mol EDTA = (6.45/1000) ×0.015 =)9.68 ×10⁻⁵ mol Cu(II)	1	
		Conc. Cu(II) = ((9.68 ×10⁻⁵) / 0.025 =) 0.00387 mol dm⁻³ Correct answer without working gains M2 only.	1	
	(t	Samples may not be consistent throughout the river		
		OR Concentration may vary over time		
		Ignore comments on technique.		
	(0	:) [Ag(NH₃)₂] ⁺ Accept name eg diamminesilver(I) ion.	1	
		aldehyde <i>Allow CHO</i> .	1	[6]
	M5. (a)	Theoretical mass produced = 180 × 2 / 138 = 2.61 g Using 1.76 × 100 / 2 is a chemical error (CE), scores 0 / 2	1	
		Percentage yield = 1.76 × 100 / 2.61 = 67.5% Correct answer scores M1 and M2. Accept 67.4% Do not penalise precision but answers must be to at least		
		two significant figures.	1	

(b) Crystals lost when filtering or washing / some aspirin stays in solution / other reactions occurring Ignore references to impurities. 1 [3] 0.0212 M6. (a) (i) Need 3 sig figs Allow correct answer to 3 sig figs eg 2.12 x 10⁻² 1 (ii) 0.0106 Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs 1 (iii) $M_r = 100.1$ 1.06 g Allow 100.1 as 'string' Need 3 sig figs or more Consequential on (a)(ii) x 100(.1) 2 Neutralisation or acid / base reaction (iv) Allow acid / alkali reaction Apply list principle 1 T = 304(K) and $P = 100\ 000$ (Pa) (b) (i) Only T and P correctly converted 1 $\frac{100\ 000 \times 3.50 \times 10^{-3}}{8.31 \times 304} \text{OR}\,n = \frac{\text{PV}}{\text{RT}}$ 1 0.139 (mol) Allow 0.138 - 0.139 1

(ii) 0.0276 - 0.0278(mol)

Allow answer to (b)(i) divided by 5 leading to a correct answer Allow 0.028

1

1

(c) 4.20 g Ca(NO₃)₂

Ca(NO₃)₂ H₂O

4.20 164(.1)	<u>1.84</u> <u>18</u>	
	<i>Mark is for dividing by the correct Mr values M2 and M3 dependent on correct M1</i>	
0.0256	0.102 M2 can be awarded here instead	
1 :	3.98	
<i>x</i> = 4	If $Ca(NO_3)_2$. $4H_2O$ seen with working then award 3 marks Credit alternative method which gives $x = 4$	

[12]

M7.(a) Mol Pb = 8.14 / 207(.2) (= 0.0393 mol) M1 and M2 are process marks

1

Mol HNO₃ = 0.0393 × 8 / 3 = 0.105 mol Allow mark for M1 × 8/3 or M1 × 2.67

1

Vol HNO₃ = 0.105 / 2 = 0.0524 (dm³) Accept range 0.0520 to 0.0530 n = pV/RT (= $101000 \times 638 \times 10^{-6}$) (8.31×298) Can score M2 with incorrect conversion of p and V If T incorrect lose M1 and M3

0.026(0) (mol) If answer correct then award 3 marks Allow answers to 2 sig figs or more 26.02 = 1 If transcription error lose M3 only

(c) (i) $2Pb(NO_3)_2(s) \rightarrow 2 PbO(s) + 4NO_2(g) + (1)O_2(g)$ Allow multiples Allow fractions

(ii) Decomposition not complete / side reactions / by-products / some (NO₂) escapes / not all reacts / impure Pb(NO₃)₂
 Ignore reversible / not heated enough / slow

(iii) Hard to separate O₂ from NO₂ / hard to separate the 2 gases
 Allow mixture of gases
 Not 'all products are gases'

1

1

1

1

1

1